- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Gross, Niklas (3)
-
Link, Stephan (3)
-
Al-Zubeidi, Alexander (2)
-
Carlin, Claire C. (2)
-
Chiang, Wei-Yi (2)
-
Dionne, Jennifer A. (2)
-
Landes, Christy F. (2)
-
Ostovar, Behnaz (2)
-
Roberts, Sean T. (2)
-
Carlin, Claire C (1)
-
Chakraborty, Amrita (1)
-
Dai, Alan X (1)
-
Dionne, Jennifer A (1)
-
Dutta, Sukanya (1)
-
Faitz, Zachary M. (1)
-
Gruebele, Martin (1)
-
Kuhs, Christopher T. (1)
-
Landes, Christy F (1)
-
Lee, Stephen A (1)
-
Lee, Stephen A. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Plasmonic photocatalysis uses the light-induced resonant oscillation of free electrons in a metal nanoparticle to concentrate optical energy for driving chemical reactions. By altering the joint electronic structure of the catalyst and reactants, plasmonic catalysis enables reaction pathways with improved selectivity, activity, and catalyst stability. However, designing an optimal catalyst still requires a fundamental understanding of the underlying plasmonic mechanisms at the spatial scales of single particles, at the temporal scales of electron transfer, and in conditions analogous to those under which real reactions will operate. Thus, in this review, we provide an overview of several of the available and developing nanoscale and ultrafast experimental approaches, emphasizing those that can be performed in situ. Specifically, we discuss high spatial resolution optical, tip-based, and electron microscopy techniques; high temporal resolution optical and x-ray techniques; and emerging ultrafast optical, x-ray, tip-based, and electron microscopy techniques that simultaneously achieve high spatial and temporal resolution. Ab initio and classical continuum theoretical models play an essential role in guiding and interpreting experimental exploration, and thus, these are also reviewed and several notable theoretical insights are discussed.more » « less
-
Al-Zubeidi, Alexander; Ostovar, Behnaz; Carlin, Claire C.; Li, Boxi Cam; Lee, Stephen A.; Chiang, Wei-Yi; Gross, Niklas; Dutta, Sukanya; Misiura, Anastasiia; Searles, Emily K.; et al (, Proceedings of the National Academy of Sciences)Solvated electrons are powerful reducing agents capable of driving some of the most energetically expensive reduction reactions. Their generation under mild and sustainable conditions remains challenging though. Using near-ultraviolet irradiation under low-intensity one-photon conditions coupled with electrochemical and optical detection, we show that the yield of solvated electrons in water is increased more than 10 times for nanoparticle-decorated electrodes compared to smooth silver electrodes. Based on the simulations of electric fields and hot carrier distributions, we determine that hot electrons generated by plasmons are injected into water to form solvated electrons. Both yield enhancement and hot carrier production spectrally follow the plasmonic near-field. The ability to enhance solvated electron yields in a controlled manner by tailoring nanoparticle plasmons opens up a promising strategy for exploiting solvated electrons in chemical reactions.more » « less
-
Gross, Niklas; Kuhs, Christopher T.; Ostovar, Behnaz; Chiang, Wei-Yi; Wilson, Kelly S.; Volek, Tanner S.; Faitz, Zachary M.; Carlin, Claire C.; Dionne, Jennifer A.; Zanni, Martin T.; et al (, The Journal of Physical Chemistry C)
An official website of the United States government
